
General Overview
 SpellTime allows you to incorporate a spell checker into your text based product. The

product comes with a Windows DLL and its complete source code. SpellTime offers the
following features:

SpellTime incorporates three types of dictionaries. The main dictionary contains more
than 100,000 English words. This dictionary is compressed to occupy only 350 K bytes on
the disk. The efficient spell checking routines decompress the main dictionary data at the
run time. The application dictionary allows an OEM to enter their industry specific
words. This feature offers you to customize the dictionary before your product is shipped
to the user. The user dictionary allows your users to enter new words into the dictionary
during the spell checking session.
The SpellTime routine can interface with your application at different levels. Your
application can call SpellTime to check a single word, or to check all words in a buffer, or
to check the entire text file.

SpellTime will show the incorrect word on the screen with a number of alternate
words to choose from. The user may also add the incorrect word to the user
dictionary, or ignore the incorrect word, or type in a replacement word. SpellTime
remembers a user action for an incorrect word, so that any subsequent occurrence
of the same word is automatically corrected. SpellTime allows your application to
highlight the incorrect word before showing the dialog box for correction.

SpellTime routines are highly optimized. A performance benchmark on a 386, 33MHz
computer reveals that SpellTime can process 500 to 700 words per second! A similar test
on a 486, 33MHz computer indicates a speed of 1000 to 1300 words per second. These
benchmarks employ a text file containing normal English words.
SpellTime employs a flexible memory management technique. The main dictionary
components are loaded as needed into the discardable memory blocks. This technique
allows the Windows to free up memory blocks in tight memory situations. SpellTime
routines needs approximately 20 K bytes of memory for the initial overhead. Additional 20
to 50 K bytes of memory may be needed during the spell checking session for the
temporary data structures.
SpellTime has two sets API functions. The second set of API functions have a suffix of
'2' (i.e. StParseLine2()) and can be used to provide thread-safe spell-checking in
multi-threaded applications. You can create one or more speller sessions for each thread.
SpellTime includes an interface to TE Edit control. This interface consists of a module
that can be linked with your program. This module can check the entire file or just the
highlighted parts. The module supports a line or character highlighted block. This module
eliminates any need of programming for incorporating spell checking facility into your
application.
SpellTime routines follow structured programming guidelines with a very limited use of
global variables. The routines use meaningful variable names. This manual describes the
functionality of the routines in detail.
The product comes with a Windows DLL and its complete source code that is
compatible with Microsoft and Borland 'C' compilers. SpellTime can be compiled in all
memory models.

Page 1

Technical Overview
 The SpellTime product consists of two components: a) a set of dictionaries, and b) a set of

DLL functions to access the dictionaries.

The main dictionary contains more than 100,000 English words. The data for the main
dictionary is contained in a DOS file called dict25.d. The index for the data is contained in
another DOS file called dict25.i. The dictionary data is stored in a compressed format. The
data is decompressed selectively during the spell checking session. A subset of the main
dictionary data resides in a separate file called dict25.s. This file contains all words that
consist of one or two letters. This separation of small words from the larger ones allows for
enhanced optimization of the word look up algorithm.

The second type of dictionary is called the application dictionary. This dictionary is
contained in a DOS file called dict25.app. This dictionary allows an OEM to insert their
industry specific words in the dictionary. You can use a text editor of your choice to insert
a word in the application dictionary. To increase the speed of look up, each word must be
delimited by a comma. The first letter of a word must be capitalized and all other words
must be in lower case.

The third type of dictionary is the user dictionary. The user can add a new word into this
dictionary during the spell checking session.

The application and the user dictionaries are shipped empty. The detail data formats of all
the dictionaries are described in a later chapter.

SpellTime offers a number of DLL functions to interface with the dictionary. The main
function is called SpellWord. This function is frequently called during a spell checking
session. The SpellWord function handles screen interactions, and word searches. This
function also manages a session database of incorrect words. This database is used to
supply automatic correction of repetitively occurring words. The SpellWord function calls
the SpellDict function to actually search the dictionary for a word. The SpellDict function
employs a highly optimized algorithm to deliver fast word look up. This function can also
deliver a set of alternative words for an incorrect word.

When the entire contents of a buffer needs to be checked, you can call the StParseLine
function repetitively to extract the individual words. The SpellWord function can then be
called to check the individual words.

Page 2

Getting Started
In This Chapter
SpellTime Files
License Key
SpellTime into Your Application
SpellTime in multi-threaded environment

Page 3

SpellTime Files

 The SpellTime diskettes contain the following files:

A. File which interface with your application:

 SPELL.DLL The DLL containing the SpellTime functions (SPELL32.DLL for WIN32).

 SPELL.LIB (SPELL32.LIB for WIN32) The import library that must be linked with
your program to interface with the SpellTime DLL.

 SPELL.H Header files to be included into your 'C' application.

 B. Dictionary files:

DICT25.D Main dictionary data file

 DICT25.I Main dictionary index file

 DICT25.S Small word dictionary

 DICT25.APP Application dictionary

 DICT25.U User Dictionary

 C. Source code files for the SpellTime DLL:

 SPELL.C The 'C' source code for SPELL.DLL (main program file).

 SPELL.DEF Definition file for SPELL.DLL

 SPELL.RC Resource file for SPELL.DLL

 SPELL.RES Compiled resource file for SPELL.DLL

 SPELLDLG.DLG Dialog definition for SPELL.DLL

 SPELLDLG.H Control Ids for the dialog definitions.

 SPL_DEF.H Constant definition file.

 SPELLDLG.RES Compiled dialog definition file. Use the SPELLDLG.H and
SPELLDLG.RES files with the Windows' Dialog Manager.

 D. Demo files:

 DEMO.EXE The executable demonstration program

 DEMO.C A demo of SpellTime function calls

 DEMO.H Include file for DEMO.EXE

Page 4

 DEMO.DEF Definition file for the demo program.

 DEMO.RC Resource definition file.

 DEMO.RES Compiled resource file.

 DEMO_DLG.DLG Contains the dialog definitions.

 DEMO_DLG.H Control Ids for the dialogs.

 DEMO_DLG.RES Compiled dialog definition file for the demo program. Use
DEMO_DLG.H and DEMO_DLG.RES with the Windows' Dialog
Manager.

 E. Make files to rebuild the DLL and the demo program:

 MAKES-BC.BAT Compiles and links DEMO and SPELL.DLL

 MAKES-BC using the Borland 'C' compiler

 MAKES-MC.BAT Compiles and links DEMO and SPELL.DLL

 MAKES-MC using the Microsoft 'C' compiler

 F. Visual Basic Support Files:

 SPELL.BAS Function declaration and constant definition file. This module must be
included into your Visual Basic application.

 DEMO_VB.MAK Make file for the demo program

 DEMO_VB.FRM Main form file for the demo program

 DEMO_VB1.FRM Form file for individual word spell checking.

 DEMO_VB2.FRM Form file for file name input

Page 5

License Key
 Your license key is e-mailed to you after your order for SpellTime is processed.

When Using SpellTime with TE Edit Control:

When using SpellTime with TE Edit Control, please use the TerSetStKey method exported
by TE Edit Control at the beginning of your program:

TerSetStKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your SpellTime license key. The license key for TE
Edit Control will not work with the TerSetStKey method.

Or, you can use the SpellTimeKey property of the Toc ActiveX control.

When using SpellTime stand-alone:

You would set the license key for a stand-alone usage of using the StSetLicenseKey static
function. This should be preferably done before calling other SpellTime methods.

StSetLicenseKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your SpellTime license key.

Page 6

SpellTime into Your Application
 Follow these easy steps to incorporate SpellTime into your application:

1.Change your application's make file to include the SPELL.LIB (SPELL32.LIB for WIN32)
in the link statement.
2.Choose a module in your application that will call the spell checker. Add a statement in
this module to include the SPELL.H file for proper function declaration.
3.Extract the individual words from your application to spell check. You may use the
StParseLine function to parse a buffer containing the text. Call the SpellWord function to
check the extracted word. The DEMO.C file illustrates both the StParseLine and
SpellWord function calls. These functions are also described in detail in the Callable DLL
functions section.

Page 7

SpellTime in multi-threaded environment
 Each API function in SpellTime comes two forms. The first set works with the default

speller session, whereas the second set of API functions work with specific speller
session. The second set of API functions are suffixed with a letter '2' and are session
dependent. For example, StParaseLine function assumes a default speller session,
whereas the StParaseLine2 function works with a specific speller session. Before using a
session dependent API function, your application needs to create a unique speller session
using the StInitSession function. At the end of a spelling session, the spelling session is
terminated using the StEndSession function.

The applications that need to use SpellTime within multiple threads, must create a unique
speller session for the thread. This speller session id is used to call the session dependent
API functions.

Example:

 DWORD id=StInitSession();

 StParseLine2(id, ...); // parse the bufer and conduct

 spell checking session

 SpellWord2(id, ...);

 StEndSession(id); // terminate the session

Page 8

Callable DLL Functions
 The source code for the SpellTime DLL functions is contained in SPELL.C. The prototypes

of the routines are contained in the SPELL.H file (Use the SPELL.BAS file with a Visual
Basic application). Your program must include this file to ensure proper function declaration
(see Getting Started). This section describes the routines in an alphabetic order.

The description of each function is divided in two parts. This first part describes the syntax,
argument description and a brief description of the functionality. The second part describes
the source code for the function.

Most functions have an additional session dependent form which can be used with a
specific session id. These functions are suffixed with a letter '2'. A unique session id can be
created using the StInitSession. After the spell checking session, the session id must be
terminated using the StEndSession function.

In This Chapter
SpellDict
SpellString
SpellWord
StGetAlternateWord
StGetReplacement
StAddVowel
StLoadResult
StClearHist
StEndSession
StInitSession
StParseLine
StResetUserDict
StSetDictName
StSetFlags
ToSpellHist
ToUserDict

Page 9

SpellDict
 int SpellDict(CheckWord,WordLen,flags)

int SpellDict2(id, CheckWord,WordLen,flags)

DWORD id; Session id.

 LPSTR CheckWord; (input) Word to look up. The valid characters in the word are lower
case 'a' to 'z' and an apostrophe character. The word string must
be NULL terminated.

 int WordLen; (input) The length of the first argument. The length argument is
provide to save the CPU cycles in this very frequently called
routine.

 unsigned int flags; (input) processing flags. (see the description below)

Description: This function performs a dictionary look up for a given word. The function scans
all 3 dictionaries. The main dictionary is scanned only if the word is not found in the user and
application dictionaries.

This function does not offer any user interface. Nor does it return the alternative words
automatically. If the user interface is desired, use the SpellWord function. The SpellWord
function internally calls the SpellDict function. Use the SpellDict function only when a lower
level interface with the dictionaries is required.

The 'flags' argument may specify the following value:

.

 ST_GET_ALTERNATES: Get the alternate words when the input word is not found in any
dictionary. This function, however, does not return the alternative
words automatically. You must call the StLoadResult function
after calling this function to retrieve the alternate words.

This flag will reduce the performance drastically. If the alternates
are desired, process each word in two steps. First, call the
SpellDict function without the ST_GET_ALTERNATE flag. If the
word is not found, then call this function again, but this time with
the ST_GET_ALTERNATE flag set on. This process will
significantly improve the performance by eliminating the extra
overhead for valid words.

Return: This function can return one of these values:

STD_FOUND: The word look-up successful.

STD_NOT_FOUND: The word not found in the dictionary.

STD_ERROR: A processing error occurred. A MessageBox displays the error message.

If the input word was not found (STD_NOT_FOUND) in the dictionary, and if the input flag has
the ST_GET_ALTERNATE flag turned on, the routine will return the alternate words in the
SugWord global variable array. Similar to the input word, the alternate words are returned in
the lower case. The number of alternate words is returned in the global variable

Page 10

TotalSugWords. Call the StLoadResult function to retrieve the values of these global
variables

Example:

char OneWord[20]="January"

int WordLen;

struct StrStResult result;

strlwr(OneWord); /* convert to lower case */

WordLen=strlen(OneWord);

if (STD_NOT_FOUND==SpellDict(OneWord,WordLen,0) {

 /* incorrect word */

 /* find alternate words */

 SpellDict(OneWord,WordLen,ST_GET_ALTERNATES);

 StLoadResult(&result)

 for (i=0;i<result.TotalAltWords;i++) {

 MessageBox(NULL,result.AltWord[i],"Alternate Words",MB_OK);

 }

}

Page 11

SpellString

 int SpellString(InString, OutBuf, OutBufLen, hWnd)

int SpellString(id, InString, OutBuf, OutBufLen, hWnd)

 DWORD id; Session id.

 char far * InString; (input) The text to be spell-checked.

 char far * OutBuf; (output) This string pointer receives the corrected text.

 int OutBufLen; The length of the OutBuf string variable.

 HWND hWnd; Parent window handle

 Description: This function takes a string of text as input and returns the spell-checked
text.

Return: This function returns the number of incorrect words found.

A negative return value indicates a processing error. A value of -2 indicates that the length
of the output buffer (OutBufLen) is too small to contain the fully corrected text string. A
value of -1 indicates a general processing error.

Page 12

SpellWord

 int SpellWord(InputWord,flag,hWnd,result)

int SpellWord2(id, InputWord,flag,hWnd,result)

 DWORD id; Session id.

 LPSTR InputWord; (input) The input word to spell check. The input word may have any
combination of upper/lower case letters 'a' through 'z' and an
apostrophe character.

 WORD flag; (input) Process control flags.

 HWND hWnd; (input) Handle of the parent window or NULL

 struct StrStResult
*result;

(output) Structure to receive the result codes and alternative words.

A non C/C++ application should specify a NULL value here, and use
the StGetReplacement and StGetAlternateWord functions to retrieve
the results from this function

 Description: The routine provides a high level user interface with the dictionaries. This
routine calls the SpellDict routine to actually look up the dictionaries. When a buffer
containing many words needs to be checked, use the StParseLine function to extract the
individual words. You can then use the SpellWord function to check each extracted word.
When the input word is not found in any dictionary, the routine will take an action indicated
by the flag argument. The flag argument may be set to one or more of these constants:

 ST_BEEP Produce a beep sound to indicate an incorrect word.

 ST_INTERACTIVE Initiate a dialog box to accept user response for an incorrect word.

To indicate more than one flag constants, use the logical OR (|) operator.

It is possible to highlight a misspelled word in your application window before showing the
SpellTime dialog box for the correction. To accomplish this, first call the SpellWord function
without the ST_INTERACTIVE flag. If the function returns with a FALSE value (misspelled
word), call the SpellWord function again, but this time with the ST_INTERACTIVE flag
turned on (see example).

This function also allows you to specify the handle of your application window. SpellTime
uses this handle to disable your application window during the dialog box session. If you do
not need this functionality, specify a NULL value for this parameter.

Return: This function returns a TRUE value if the word is found in the dictionary. The
function also returns a TRUE value if the currently incorrect word was previously ignored by
the user. Therefore, a word that is not found in the dictionary is still considered correct if
the user had previously considered the word acceptable.

The function returns a FALSE value when the word is not found in the dictionary or if a
processing error occurred. In such a condition, SpellTime returns detail information about
the processing in the StrStResult structure variable pointed by the last argument. The code
variable within this structure will have one of these values:

(If your application language does not permit passing a structure pointer for the StrStResult

Page 13

structure, use the StGetReplacement and StGetAlternateWord functions to get the result).

 ST_IGNORE: The user ignored this incorrect word. There is no further action
needed on the part of the calling routine.

 ST_REPLACE: The user wishes to replace the current word with another word. This
flag indicates that the replacement word was derived from the history
buffer. The replacement word is returned in the StrStResult structure
variable replace.

 ST_ADD: The user added the current word to the user dictionary. There is no
further action needed on the part of the calling routine.

 ST_INPUT: The user typed in a replacement word for the current word. The
replacement word is returned in the structure variable replace.

 ST_EXIT: This flag indicates that the user wishes to exit the spell checking
session. The calling routine should now take an appropriate action
to end the session.

 ST_TOO_LONG: This flag indicates that the current word was too long to check.

 ST_ERROR: This flag indicates a processing error. The actual error message is
displayed using a MessageBox.

 The code variable can have more than one of these flags set. Use the logical AND (&)
operator to test for a flag, i.e. if (code&ST_EXIT) ...

When the result variable is equal to one of the first four codes, a set of alternative words is
also returned by the StrStResult structure. The TotalAltWords variable within the structure
indicates the number of alternative words available. Whereas, the AltWord array contains
the list of alternative words.

Example:

 char OneWord[20]="January"

 int WordLen;

 struct StrStResult result;

 if (!SpellWord(OneWord,0,NULL,&result) {

 /* incorrect word */

 /* highlight the misspelled word if desired */

 .

 .

 .

 /* call again with the ST_INTERACTIVE flag */

 SpellWord(OneWord,ST_INTERACTIVE,NULL,&result);

Page 14

 if (result.code&ST_EXIT) return;

 if (result.code&ST_ERROR) return;

 if (strlen(result.replace)>0) { /* replace */

 strcpy(OneWord,StReplace);

 }

 }

 else {

 MessageBox(NULL,"Correct Word",NULL,MB_OK);

 }

This example calls the SpellWord routine to spell check a word. The first call is made
without the ST_INTERACTIVE flag merely to detect a misspelled word. When a misspelled
word is detected, the SpellWord function is called again to conduct the correction session.
Between these two calls, you can insert the necessary statements to highlight the
misspelled word in your application window.

After the second call, the 'exit' and the 'processing error' condition is examined by checking
for the ST_EXIT and ST_ERROR flags. Otherwise the replace variable is checked for a
replacement word. If a replacement word is available (strlen(result.replace)>0), the
replacement word is copied to the OneWord variable.

You may like to compare this example with the one given with the SpellDict function. This
example reveals that the SpellWord function provides a much higher level of user interface
compared to the SpellDict function.

Page 15

StGetAlternateWord

 int StGetAlternateWord(WordNumber, AlternateWord)

int StGetAlternateWord2(id, WordNumber, AlternateWord)

 DWORD id; Session id.

 int WordNumber; (input) Alternate word number to retrieve.

 char far *AlternateWord; (output) This string pointer receives the alternate word
indicated by the first argument.

 Description: This function can be used to retrieve the alternate words suggested by the
SpellWord function. This function is only useful if your application language does not allow
you to pass a structure pointer (StrStResult) to the SpellWord function to retrieve the
result.

Return: The function returns the total number of suggested words.

Example:

 int TotalAlternateWords;

 char AlternateWord[30];

 int i;

 if (!SpellWord(OneWord,0,NULL,NULL) {

 /* incorrect word */

 TotalAlternateWords=StGetAlternateWord(0,AlternateWord);

 for (i=0;i<TotalAlternateWords;i++) {

 /* retrieve each alternate word

 StGetAlternateWord(i,AlternateWord);

 }

 }

Page 16

StGetReplacement

 int StGetReplacement(ReplaceWord)

int StGetReplacement2(id,ReplaceWord)

 DWORD id; Session id.

 char far *ReplaceWord; (output) This string pointer receives the replacement word.

 Description: This function can be used to retrieve the replacement word suggested by the
SpellWord function. This function is only useful if your application language does not allow
you to pass a structure pointer (StrStResult) to the SpellWord function to retrieve the
result.

Return: The function returns the result code provided by a previous call to the SpellWord
function. Please refer to the SpellWord function for a list of result code constants.

Example:

 int ResultCode;

 char ReplaceWord[30];

 if (!SpellWord(OneWord,0,NULL,NULL) {

 /* incorrect word */

 ResultCode=StGetReplacement(ReplaceWord);

 }

Page 17

StAddVowel

 BOOL StAddVowel(chr)

BOOL StAddVowel2(id, chr)

 DWORD id; Session id.

 char chr; A vowel character to be added to the vowel list. This character
must be specified in lower case.

 Description: This function can be called after initializing a spell-checking session.

Return: This function returns TRUE when successful. Otherwise it returns a FALSE value.

Page 18

StLoadResult

 int StLoadResult(result)

int StLoadResult2(id, result)

 DWORD id; Session id.

 struct StrStResult far
*result;

(output) Points to the structure which will receive the result.

 Description: This function can be used to retrieve the alternate words after calling the
SpellDict function with the ST_GET_ALTERNATES flag (see SpellDict). The calling routine
passes a pointer to the StrStResult structure, which receives the result parameters.

struct StrStResult {

 WORD code;

 char replace[ST_MAX_WORD_LEN+1];

 int TotalAltWords;

 char AltWord[ST_MAX_SUG_WORDS][ST_MAX_WORD_LEN+1];

}

This structure is defined in the SPELL.H file. Only the last two variables are used by the
SpellDict function. The TotalAltWords variable within the structure indicates the number of
alternative words available. Whereas, the AltWord array contains the list of alternative
words.

Example:

 char OneWord[20]="January"

 int WordLen;

 struct StrStResult result;

 strlwr(OneWord); /* convert to lower case */

 WordLen=strlen(OneWord);

 SpellDict(OneWord,WordLen,ST_GET_ALTERNATES);

 StLoadResult(&result)

 for (i=0;i<result.TotalAltWords;i++) {

 MessageBox(NULL,result.AltWord[i],"Alternate Words",MB_OK);

 }

Page 19

Page 20

StClearHist

 int StClearHist()

int StClearHist2(id)

 DWORD id; Session id.

 Description: Use this function to clear the SpellTime history buffer.

Normally SpellTime will remember the misspelled words that are 'ignored' or 'replaced' by
another word. On the subsequent occurrences of these words, SpellTime automatically
provides the correction. The misspelled words are stored in the history buffer. This function
allows you to clear this buffer any time. For example, you may like to clear the history
buffer before starting a new spell checking session.

Return: This function returns a TRUE if successful. Otherwise it returns a FALSE value.

Example:

 StClearHist();

 while (!EOF) {

 /* spell check statements here */

 }

Page 21

StEndSession
 DWORD StEndSession()

Description: Use this function to terminate a speller session.

The session id returned by the StInitSession function can be used to call the session
dependent API functions. At the end of the spelling session, call StEndSession to
terminate a spelling session.

Return: This function returns a TRUE value when successful.

Page 22

StInitSession
 DWORD StInitSession()

 Description: Use this function to create a new speller session.

The session id returned by this function can be used to call the session dependent API
functions. At the end of the spelling session, call StEndSession to terminate a spelling
session.

Return: This function returns a non-zero session id if successful. Otherwise it returns zero.

Example:

 char OneWord[20]="January"

 int WordLen;

 struct StrStResult result;

 DWORD id;

 Id=StInitSession(); // create a new spell

 checking session

 // spell check one or more words

 if (!SpellWord2(id, OneWord,0,NULL,&result) { // note

 the use of SpellWord2 instead of SpellWord function.

 /* incorrect word */

 /* highlight the misspelled word if desired */

 .

 .

 .

 /* call again with the ST_INTERACTIVE flag */

 SpellWord2(id, OneWord,ST_INTERACTIVE,NULL,&result);

 if (result.code&ST_EXIT) return;

 if (result.code&ST_ERROR) return;

 if (strlen(result.replace)>0) { /* replace */

 strcpy(OneWord,StReplace);

 }

 }

Page 23

 else {

 MessageBox(NULL,"Correct Word",NULL,MB_OK);

 }

 StEndSession(id); // terminate the spell checking session

Page 24

StParseLine

 int StParseLine(buffer,word,WordIndex,CurIndex,LineLen)

int StParseLine2(id, buffer,word,WordIndex,CurIndex,LineLen)

 DWORD id; Session id.

 LPSTR buffer; (input) Pointer to the buffer containing the words to extract.

 LPSTR word; (output) Pointer to the location where the extracted word is to
be copied.

 LPINT WordIndex; (output) Starting position of the extracted word with respect to
the beginning of the buffer.

 LPINT CurIndex; (input/output) The function begins examining the buffer
location as given by this argument. When a word is extracted,
this location is updated to contain the pointer after the end of
the word. Therefore, the next call to the StParseLine routine
will automatically begin the search where the previous call
ended.

 int LineLen; (input) The length of the buffer to examine. The length is
counted from the beginning of the buffer. If the calling routine
inserts or deletes a word in the buffer, it should update this
variable appropriately to reflect the updated length of the
buffer.

 Description: Use this routine to parse a buffer containing words to be spell checked. Each
call returns a word. The extracted word contains a combination of upper/lower case
characters 'a' to 'z' and the apostrophe character. This word is acceptable to the SpellWord
function. Therefore, the main usage of this function is to create words for the SpellWord
function. Your application can call this function repetitively until all words from a buffer are
extracted.

Return: The function returns the length of the extracted word. A zero length indicates the
end of the buffer.

Example:

 char line[100]="It pays to increase your word power

 (Dr. Funk).";

 char CurWord[30];

 int LineLen,WordLen,CurIndex,WordIndex;

 struct StrStResult result;

 CurIndex=0; /* initialize the beginning of search */

 LineLen=strlen(line);

 while ((WordLen=StParseLine(line, CurWord, &WordIndex,

Page 25

 &LineIndex, LineLen) {

 if(!SpellWord(CurWord,ST_INTERACTIVE|ST_BEEP,NULL,&result){

 MessageBox(NULL,"Incorrect Word",NULL,MB_OK);

 if (result.code&ST_EXIT) return;

 if (result.code&ST_ERROR) return;

 if (strlen(result.replace)>0) {

 /* insert the new word in the line buffer */

 /* update the LineLen variable */

 }

 }

 else {

 MessageBox(NULL,"Correct Word",NULL,MB_OK);

 }

 }

Page 26

StResetUserDict

 int StResetUserDict(new,old)

int StResetUserDict2(id, new,old)

 DWORD id; Session id.

 LPSTR new; (input) Pathname of the new user dictionary.

 LPSTR old; (output) Pathname of the previous user dictionary.

 Description: This routine closes the current user dictionary and opens the specified new
user dictionary. If the new dictionary parameter is NULL, the current dictionary remains
open. However, its contents are written out to the disk file. The second argument receives
the pathname of the previous user dictionary. The second argument should point to a string
large enough to hold a complete DOS pathname.

This function serves two purposes. First, it is used to update the user dictionary file with
the contents of the user dictionary buffer. It is accomplished by calling this function with
NULL arguments at the end of the spell checking session. Second, this function can be
used to activate a new user dictionary before initiating a spell checking session. By default,
the 'dict25.u' file is used as the user dictionary. An application that sets a new user
dictionary should activate the previous dictionary at the end of the session. This also
causes the new user dictionary file to be updated.

Return: This function returns a TRUE value to indicate the success, and a FALSE value to
indicate a processing error. The pathname of the previous dictionary is copied to the string
pointed by the second argument.

Example:

 1. update the existing user dictionary file

 StResetUserDict(NULL,NULL); /* c/c++ example */

 call StResetUserDict(ByVal 0&, ByVal 0&) ' VB example

 2. open a new user dictionary

 char old[128];

 StResetUserDict("mydict",old);

 /* spell checking statements here */

 .

 .

 .

Page 27

 StResetUserDict(old,NULL);

Page 28

StSetDictName

 BOOL StSetDictName(DictName)

BOOL StSetDictName2(id, DictName)

 DWORD id; Session id.

 LPSTR DictName; (input) New name of the main dictionary excluding the file
suffix. Example: dict25

 Description: The standard dictionary name is dict25. If you are using a dictionary with a
different name, use this function to specify the new name. This function must be called
before calling any other SpellTime function.

Return: This function returns TRUE when successful.

Page 29

StSetFlags

 DWORD StSetFlags(set, flag)

DWORD StSetFlags2(id, set, flag)

 DWORD id; Session id.

 BOOL set; TRUE to set the flag, or FALSE to reset it.

 DWORD flag; The flag to set or reset.

The following flags are available currently:

 STFLAG_USE_APOSTROPHE: SpellTime normally treats the apostrophe
character as the possessive case modifier.
Instead, you can set this flag in the beginning
of your program to treat the apostrophe
character as a regular character.

 STFLAG_SPANISH_DLG: Show the word-selection dialog box in spanish.

 STFLAG_NO_NUM_IN_WORD This flag instructs the StParseLine function to
filter words containing numbers.

 STFLAG_DUTCH_DLG Show the word-selection dialog box in Dutch.

 STFLAG_GERMAN_DLG Show the word-selection dialog box in German.

 STFLAG_FRENCH_DLG Show the word-selection dialog box in French.

 STFLAG_ALL_CAPS_TO_LOWER Convert a capitalized word to lower case for
spell checking. This feature is useful when
using a case-sensitive dictionary.

 Return: This function returns the new value of the flag bits.

Page 30

ToSpellHist

 int ToSpellHist(CurWord,flag,ReplaceWord)

int ToSpellHist2(id, CurWord,flag,ReplaceWord)

 DWORD id; Session id.

 LPSTR CurWord; (input) A word that needs to be inserted into the history buffer.

 char flag; (input) The flag that indicates whether the word is (I) ignored
by the user or is (R) replaced by another word.

 LPSTR ReplaceWord (input) Pointer to the replacement word when the flag is equal
to 'R'.

 Description: This routine is used to insert a word into the history buffer. All subsequent
occurrences of the given word is automatically ignored or replaced by the DLL. If the word
is being replaced by another word, the replacement word is provided by the last argument.

Both the input word and the replacement word must be provided in lower case.

Page 31

ToUserDict

 int ToUserDict(CurWord)

int ToUserDict2(id, CurWord)

 DWORD id; Session id.

 LPSTR CurWord; (input) A word that needs to be added to the user dictionary
buffer.

 Description: This routine is used to add a word to the user dictionary. The input word must
be provided in lower case.

Also note that your application needs to call the StResetUserDict function at the end of
your program to actually write the updated user dictionary to the disk file.

See Also
StResetUserDict

Page 32

Memory Considerations
 Some SpellTime data objects have a fixed memory requirement, where as other objects

have flexible memory requirements. In this section we will discuss each data component.
Where possible, we will also indicate ways of reducing memory overhead by curtailing
certain functionalities.

Dictionary Index: This component consists of data pointers (4 bytes), data size (4 bytes),
and data location (1 byte). There are 784 (ST_SIZE*ST_SIZE) dictionary indices. Therefore
the total memory requirement is approximately 7 K bytes ((4+4+1)*784). This memory is
allocated in the FAR location.

Small Word Dictionary: At present, SpellTime requires approximately 450 bytes to read
the small word dictionary (dict25.s) into memory.

Application Dictionary: The memory requirement is equal to the size of the application
dictionary. The application dictionary, as shipped by Sub Systems, is empty. To preserve
memory, keep the size of the application dictionary to a minimum.

User Dictionary: The memory requirement for this component is equal to the size of the
user dictionary plus an allowance (ST_BUF_SIZE) for new words. At present the
ST_BUF_SIZE is set to 2 K bytes.

History Buffer: The initial size of the history buffer is equal to 2*ST_BUF_SIZE. The history
buffer can expand during the spell checking session as needed. You can reduce the initial
memory requirement of this component by assigning a smaller value to the ST_BUF_SIZE
global constant.

Main Dictionary Data: The cumulative memory requirement for all objects in the main
dictionary data file is approximately 350 K bytes. However, the memory requirement for this
component is flexible (minimum memory requirement = 0 K bytes). The main dictionary
data is not loaded into the memory during the initialization. The data is read into the
discardable memory buffers as needed during the spell checking session.

Page 33

Define Statements

 SpellTime uses a number of global constants. Some of these constants are defined in the
SPELL.H file. These constants are meant to interface with your application program. Other
constants, which are defined in the SPELL.C module, are for the internal use of the
SPELL.C module.

The Constants Defined in the SPELL.H File:

 ST_MAX_WORD_LEN Maximum length of the word processed by SpellTime.

 ST_MAX_SUG_WORDS Maximum number of alternate words returned by SpellTime.
You can change this constant if you wish SpellTime to
return a different number of alternate words

 ST_GET_ALTERNATES Get alternate words

 ST_INTERACTIVE Invoke spelling correction dialog box

 ST_BEEP Beep on spelling mistake

 ST_IGNORE Ingore the misspelled word

 ST_REPLACE Replace the misspelled word

 ST_REFRESH Refresh the screen

 ST_TOO_LONG Word too long

 ST_ERROR Processing error

 ST_EXIT User clicked on the Exit button on the dialog box

 ST_ADD Add to the user dictionary

 ST_INPUT Flag constant, do not modify.

Page 34

Interface With TE Edit control
 TE Edit control can interface with SpellTime without any coding on your part. Simply move

the spell.dll (spell32.dll for Win32) to the directory where the ter.dll or ter32.dll is located.
Then move all the dict25.* files to a directory which is accessible during runtime.

To invoke spell checking from within your program, simply add this statement:

TerCommand(hWnd,ID_SPELL)

or, set the command property of the TER ocx:

command=ID_SPELL

Page 35

The Spell Checker Demo Program

 The SpellTime package comes with a stand-alone spell checker program called DEMO.
DEMO is also designed to demonstrate, by example, the usage of the SpellTime routines.

The initial window of the demo program displays two menu selections: File checkup, and
Individual Word Look up.

File Checkup:

This selection allows the user to spell check a text file. The user can specify the name of
the input file and the update mode. Select the Read Only mode if you do not wish to write
the corrections to the disk file. The CheckFile function conducts the spell checking
session. It opens the file to read each text line. The StParseLine (see StParseline) function
is used to derive individual words from the text line. The individual words are checked using
the SpellWord (see SpellWord) function. This function allows the user to correct a
misspelled word. The user can select a replacement word from a list of alternative words, or
type in a new word. The user can also elect to write the word to the user dictionary.

Please note that before the spell checking session is begun, the CheckFile function calls
the StClearHist function to purge the previous SpellTime history (see StClearHist). This
calls instruct SpellTime to purge the previous list of 'ignored' and 'replace' word. This step is
optional.

The program creates a backup of the input file before writing the corrected text to it. The
name of the backup file is made up of the prefix of the input file and a .ST extension.

Individual Word Look up:

The second selection allows the user to check one word at a time. This option simply
accepts a word in a dialog box, and calls the SpellWord function to check it. The correction
status is displayed on the screen.

Note that the WinMain function toward the end includes a call to the StResetUserDict
function. This function call ensures that the user dictionary buffer is written out to the disk
file.

Page 36

Dictionary Update Utilities
 The package comes with 3 DOS based utilities to add new words to the main dictionary.

Follow these steps to add new words to the main dictionary:

1) Run the DECOMP25.EXE utility to decompress the main dictionary into a number of text
files. The text files are named as DCT_A through DCT_Z, DCT_n, DCT_SML. DICT25.map.
The DCT_A through DCT_Z files contain the words starting with an English alphabet. If the
dictionary supports additional characters, those words are written into the files with name
(DCT_n) built by concatenating the ASCII value of the character to the prefix 'DCT_'. For
Example, the DCT_39 file contains words that start with an apostrophe character, i.e. 'twill.
The DCT_SML file is a copy of dict25.s, the small word dictionary. The words in the text
files have compression codes in the form of a period (.) character.

The dict25.map contains the character map supported by the dictionary. The file has one
line for each supported character. Each line has two letters separated by a comma. The
first letter denotes the uppercase form of the letter, and the second letter denotes the
lowercase form of the letter. Example: A,a.

Syntax:

DECOMP25 [/S]

The optional /S switch suppresses the program messages.

2) Run the MERGE25.EXE utility to merge a list of words contained in a word file to the
DCT_* files. The word file should consist of words delimited by a space, comma, or
carriage return/new line combination. The individual words can contain the characters
supported indicated in the dict25.map file. For example, the standard dictionary supports
these characters:

Alphabets 'a' through 'z'

Alphabets 'A' through 'Z'

and an apostrophe character.

The merge utility converts the uppercase characters to the lowercase. A word must not be
greater than 40 characters. The apostrophe characters can be used only as an abbreviator,
and NOT as a possessive specifier. A merge file may not be larger than 32000 bytes. You
can break a large merge file into smaller files and run the MERGE25 program multiple
times.

Examples of valid words in a word file:

cat, dog

cats,dogs

Apple,

he'll

Examples of invalid words:

21ST /* numerics not allowed */

Page 37

cat's /* possessive case not allowed */

apple-growers /* hyphenation not allowed */

The DICT25.APP and DICT25.U files contain the words in the valid format. Thus, these files
can be directly merged into the dictionary text files.

Syntax:

MERGE MergeFile [/S]

MergeFile: Name of the word file.

The optional /S switch suppresses the program messages.

Example:

MERGE dict25.u

MERGE dict25.app /S

MERGE YourMergeFile

As an alternative, you can also use a text editor to add or delete words form the DCT_A
through DCT_Z, and DCT_n files. This manual method requires utmost care so as not to
disturb the sorting order within the file. The sorting order is governed by the position of the
characters in the dict25.map file. In the standard dictionary, the text files assume that the
apostrophe character has a higher collating sequence than the letter 'z'. The MERGE25
utility also inserts the compression codes appropriately into the new words. If you are
manually editing the text files, you will need to provide these compression codes to match
the neighboring words. Because of these considerations, we encourage the use of the
MERGE25 program instead.

3) Run the COMP25.EXE utility to compress the dictionary text files (DCT_*) to form the
dict25.d and dict25.s files.

Syntax:

COMP25 [/S]

The optional /S switch suppresses the program messages.

Although these 3 steps are required, you do not necessarily have to run the first step every
time. Normally you can delete the DCT_* files after the last step. But if you have enough
disk space, you may like to retain them. If the text files are retained, you can skip the first
step the next time.

Page 38

Building a Foreign Language Dictionary
 The dictionary update utility described in the previous chapter can be used to build a

foreign language dictionary. The dictionary update utilities support foreign languages which
are based on a single byte character set. Follow these steps to build a foreign language
dictionary.

1. Build the character map file (dict25.map). The character map file is a plain ASCII file
which contains the characters supported by the language. To retrieve the default map file,
run the DECOMP25.EXE program. The default map file contains these lines:

A,a

B,b

C,c

D,d

E,e

F,f

G,g

H,h

I,i

J,j

K,k

L,l

M,m

N,n

O,o

P,p

Q,q

R,r

S,s

T,t

U,u

V,v

W,w

Page 39

X,x

Y,y

Z,z

','

If your language uses the English alphabets, then you don't need to modify this file. If you
language uses the English alphabets and also some additional characters, add the
additional characters after the last line in the file.

If your language uses non-English alphabets, delete the existing lines from this file and add
new lines, one for each character supported by the language. Each line should contain 2
characters separated by a comma. The first character should be the uppercase form for the
letter. The second character should be the lowercase variation for the letter. For some
characters the uppercase and the lowercase form may be identical.

The standard English dictionary map has 27 characters ('a' to 'z', and an apostrophe
character). SpellTime supports up to 62 characters for a language. SpellTime works more
efficiently with dictionaries that have a smaller number of characters in the character set.

2. Once the map file is built, you are ready to merge your list of words by using the
MERGE25.EXE program. This program merges a file containing the list of words into the
decoded dictionary file set. Please refer to the previous chapter for the description of the
merge program.

3. Once all the merge files are merged into the decoded dictionary file set, you can use the
COMP25.EXE program to build the binary dictionary file.

Page 40

Visual Basic Support
 The SpellTime DLL functions are compatible with the Visual Basic environment.

The SPELL.BAS file provides the necessary interface for a Visual Basic application.
Include the SPELL.BAS module in your applications. This file contains the DLL function
declarations, constant definitions, type declarations, and auxiliary functions. This file
essentially is the Visual Basic translation of the SPELL.H file that is used with a 'C'
language application.

The SPELL.BAS module contains two additional constants: ST_TRUE and ST_FALSE.
Use these constants to compare the result of a function call. Example:

if ST_TRUE = SpellWord(.....) then

The SpellTime manual describes each DLL function in detail. The function syntax
description in the manual is applicable to the Visual Basic interface as well. Please refer to
the DEMO_VB demo program for the examples of SpellTime function calls.

Output String Normalization: The SpellTime functions that return string output require
special handling. Before calling the function the output string must be expanded to the
maximum length that can be used by the DLL. You can use the Visual Basic 'space'
function for this purpose. Besides, the DLL terminates an output string with a NULL
character. This character must be stripped out from the output string. You can use the
'DiscardNull' function for this purpose.

Example 1:

 Dim CurLine as string

 Dim CurWord as string

 Dim WordIndex as integer

 Dim LineIndex as integer

 Dim LineLen as integer

 Dim WordLen as integer

 CurWord = space(ST_MAX_WORD_LEN+1) ' allocate enough

 space for the output variable

 WordLen=StParseLine(CurLine,CurWord,WordIndex,

 LineIndex,LineLen)

 CurWord=DiscardNull(CurWord) ' output string

 normalization

Note that the 'DiscardNull' function is not called for the CurLine variables, because this
variable is used for input only.

Example 2:

Page 41

 Dim WordFound as integer

 Dim result as StResult ' StResult defined in SPELL.BAS

 Dim ReplaceWord as string

 Dim FirstAlternateWord as string

 WordFound=SpellWord(CurWord,0,0,result)

 ReplaceWord = DiscardNull(result.replace)

 FirstAlternateWord = DiscardNull(result.AltWord(0))

Page 42

Visual C++ Interface
 The SPELL DLL can be used with a Visual C++ application without any change. Simply

include the SPELL.H file into your application module that calls the SPELL functions.

Recompiling SPELL DLL files

If you need to modify the DLL source code and recompile within the Visual C++
environment, follow these steps to create a Visual C++ project:

Files: SPELL.C, SPELL1.OBJ, SPELL.DEF and SPELL.RC

Executable Type: Windows DLL

Alignment (Compiler Option): 1 Byte

Remaining parameters should be left at their default values.

Page 43

Dictionary Data Format
 This section describes the data format of the various dictionary components. Normally, an

application developer only needs to know the data format of the application dictionary. The
discussion of the application dictionary is provided in the second section.

An application developer does not need to understand the dictionary format of the main
dictionary. Nonetheless, the data format is described here for those developers who have
time and inclination to dwell into the complexity of this subject matter.

Main Dictionary

The main dictionary consist of three files: DICT25.D, DICT25.I and DICT25.S. The DICT25.S
file contains small words that consist of one or two letters. The words in this file are stored
in lowercase and are delimited by a comma.

The DICT25.D file contains the words that have more than 2 characters. This file is divided
into various word buckets. Each word bucket contains words that have a common first two
letters. For example, words that start with 'ab' are stored in one bucket, and the words that
start with 'ac' are stored in another bucket. The DICT25.I file contains the pointer to each
word bucket. The DICT25.I file also contains the size of each word bucket.

The words in a word bucket are arranged in the alphabetic order. Further, the words are
stored in a compressed format. To understand the compression scheme employed in the
dictionary, consider these 3 words:

 cerebra

 cerebral

 cerebrally

These words clearly have common string components. The dictionary will store these
words in a series as following:

 cere bra l lly

Obviously, this series must be stored in such a fashion so that three individual words can
be extracted during the spell checking session. The series has four components. The first
word can be reconstructed by combining the first and the second component. The second
string can be reconstructed by combining the first, second and the third component. The
third word can be reconstructed by combining the first, second and the fourth component.
Therefore, it is necessary to delimit these components in the dictionary.

The process of delimiting the components is facilitated by a concept of levels. A level
determines the hierarchy of a component in its parent words. In the example above, the
individual components will be assigned the following levels:

 cere 0

 bra 1

 l 2

 lly 2

Normally the alphabetic characters are mapped to ASCII 1 to 26. The apostrophe character

Page 44

is mapped to ASCII 27. Therefore, all characters in level zero ("cere") will be mapped to the
values between 1 and 26. The first character of the second level ("bra") will be raised to
level one by adding ST_SIZE to its level zero value. The second character of the second
level will be at level zero. The last character of the second level will be raised to the highest
level (ST_MAX_LEVELS). The ST_MAX_LEVELS indicates an end of the word. With the
information provided in this paragraph, you can reconstruct the first word.

To reconstruct the second word, look at the third component ("l"). This component has only
one character. This character is raised to the second level. Because there are no additional
characters, an additional character (ST_END_OF_WORD) is appended which marks the
end of this word.

To reconstruct the third word, notice that the fourth component is also raised to the second
level. By applying the logic of the preceding two paragraphs, the third word can be
constructed by combining the first, second, and the fourth component.

The end-of-series is indicated by appending the ST_NEW_STREAM character.

Application Dictionary

A developer needs to understand the format of the words in the application dictionary to
add the words specific to their industry.

The format of the application dictionary is simple. You can use a text editor to add words to
the application dictionary. The rules are simple. A word must be entered in lowercase with
the first letter capitalized. The word must end with a comma. You can enter as many words
in a line as you wish. For example, the contents of a biologist's application dictionary may
look something like this:

Malpighian,Protonephridia,Excretory,

Solenocytes,Tubules,

Osmosis,Annelid,Haversian,

Although, new words can be added very easily to the application dictionary, the number of
words in this dictionary should be kept as small as possible. Because, as the size of the
application dictionary grows, the fixed memory overhead increases and the longer linear
search reduces the overall performance.

User Dictionary

The user dictionary is automatically updated by the SpellTime routines. The internal format
of the user dictionary is similar to the format of the application dictionary. However, since
the user dictionary is not updated externally, it does not have <CR><LF> characters. All
words are stored in lowercase with the first character capitalized. Each word is delimited
by the comma character.

Page 45

	General Overview
	Technical Overview
	Getting Started
	SpellTime Files
	License Key
	SpellTime into Your Application
	SpellTime in multi-threaded environment

	Callable DLL Functions
	SpellDict
	SpellString
	SpellWord
	StGetAlternateWord
	StGetReplacement
	StAddVowel
	StLoadResult
	StClearHist
	StEndSession
	StInitSession
	StParseLine
	StResetUserDict
	StSetDictName
	StSetFlags
	ToSpellHist
	ToUserDict

	Memory Considerations
	Define Statements
	Interface With TE Edit control
	The Spell Checker Demo Program
	Dictionary Update Utilities
	Building a Foreign Language Dictionary
	Visual Basic Support
	Visual C++ Interface
	Dictionary Data Format

